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The analytic expression of the vibrational wavefunction for a diatomic Morse potential is 

well known but practically unused for high vibrational lcvcls v; this is due to the fact that the 
Laguerre polynomials appearing in the Morse wavefunctions are diflicult to handle for high U. 
A recurrent formula relating $, to $_ i, at any point, and independent of the Laguerre 
polynomials, is presented. The numerical value of $, is thus easily found at any point for any 
level (up to the dissociation). 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

The vibration-rotation motion of a diatomic molecule is described by tne 
wavefunction $,(r), where r is the.internuclear distance, u is the vibration quantum 
number, and .I is the rotational one. This wavefunction is the solution of the radial 
Schroedinger equation 

d211/dr) ----+ 
dr2 

subject to the boundary conditions 

where U(r) is the potential of the considered electronic state of the molecule, p and 
h having their usual significance [ 11. 

A well-known analytic expression of the wavefunction which corresponds to the 
Morse rotationless potential (J=O) [2], is given by 

where 

$,M(r) = E-~/~z~~~L$z) (3) 

z = ke -4r r,) 

b=k-2v-11. 
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k, a, Y, are constants related to the Morse potential function; L:(z) is the 
generalized Laguerre polynomial. 

The Morse potential function is not considered of physical interest any more. It is 
commonly replaced by the numerical potential (determined by the coordinates of 
its turning points with suitable interpolations and extrapolations), which is deter- 
mined by the well-known RKR semi-classical methods [3] or by the recent quan- 
tum methods [4-51. 

The wavefunction lclUJ is thus determined by numerical integration of the 
Schroedinger equation. Since the earlier work of Cooley [6], many papers designed 
to improve the accuracy of the computed wavefunction [7-121 have been 
published. 

To test the accuracy of a numerical method, one usually applies it to the Morse 
potential and compares the computed wavefunction $; to the exact one $y 
(Eq. (3)), or compares the computed eigenvalue E; to the Morse exact one E,M 
given by [2] 

E,M = w,(u + 4) - w,x,(u + 4)’ (4) 

While the last test is commonly found in the literature, the “wavefunction-test” is 
rarely presented [S-S], and for only low vibrational levels (0 < v < 4). 

We believe that the reason is due to the fact that the Laguerre polynomials 
appearing in the Morse wavefunctions tj,” are difficult to handle. For most of the 
practical cases we have k- 100, a- 1, and z N 100 (near the equilibrium Y,); some 
elements of the polynomial L:(z) become as large as z’. Since the elements of L:(Z) 
are alternatively positive and negative, the accurate computing of these polynomials 
for the high values of v becomes tedious work, and the Morse wavefunction cannot 
be considered “exact” any more. 

This difficulty is avoided by giving an expression of the Morse wavefunction $,“, 
that is, independent of the Laguerre polynomial and, thus, easy to handle. A 
recurrent formula relating It/y to $,” is p resented in Section 2. A new test for the 
numerical methods of computing the wavefunction $” is presented in Section 3. 
Some examples of a numerical application are given in Section 4. 

2. A RECURRENT FORMULA FOR THE MORSE WAVEFUNCTION 

Consider the Morse wavefunctions for v and v - 1: 

~~(Z)~e-“2z(~--Zv-11)/2~~-z2v-l(Z) 

~“-l(Z)=e-i/22(k--Zv+l)12~~Z~U+l(z)~ 

The ratio of these functions is 
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Using the well-known relation [13], 

L;(z) = L;+ ‘(2) - L;I i(z) 

twice produces 
L~-2u-1=L~~2”+1_2L~_:“+1+L~_~u+l. 

(5) 

In order to retain polynomials of order v and v - 1 only, use the other well- 
known relation [13] 

(n+1)L~+,(z)-(2n+a+1-z)L~(z)+(n+a)L~~,(z)=O (6) 

to obtain 
L”-2”-~-(k-2v)L$-2”+1-(k-2v-z)L~~:U+* 

- 1, k-v 

and 

*, 1 -=-----x 
ti”-1 z(k - v) 

-(k-2v+z)+(k-Zv)z::;;;j. 
L-1 

In order to eliminate the Laguerre polynomial from this relation, consider 

R 

along with 

R.=‘;I:f:-:. 
u 

Using Eq. (7) and Eq. (5) again results in 

R -k-vx(k-2v-z)R,m,-(k-2v) 

’ v+l (k-2v)R,_,-(k-2vtz) 

where R, = k - z (according to the definition of Le [13]). 
Finally, 

~=-$--q-(k-2v+z)+(k-2v)R,;~,] 
” 1 

with rc10 = e--i’2z(k-1)‘2 (according to Eq. (3)). 
For practical reasons, it is convenient to consider the ratio 

(7) 

(9) 
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We deduce that: 

P”(Z) tiu(z) @u-,(k) -=---.---xx 

do- 1(z) i,- l(z) $,(k) 

According to Eq. (9), we have 

&=&x C-2(k-u)+(k-2v)R,-,(k)] 
0 1 

and according to Eq. (S), we have 

k-v 
R,(k) =-x 

-2vR,_,(k)-(k-20) 
V+ 1 (k-2u) R,_,(k)-2(k-0)’ 

R,(k) = 0 

and 

~=kxk-2v+z-(k-2c)R,-1(z) 
dv-l(Z) = 2(k-v)-(k-2v) R,-,(k) 

with 

The two functions @“(z) and do(z) differ only by a multiplicative constant, and 
both represent the unnormalized Morse wavefunction. However the function 4&z) 
presents an advantage, since &(z) does not contain the term z(k-1J/2 appearing in 
$0(z). This term might be large (N 10’oo) and present numerical difficulties. 

3. THE TESTING OF A NUMERICAL METHOD 

Some well-known numerical methods seek to compute the eigenvalue E, and the 
eigenfunction II/, simultaneously. A simple scheme of some of these methods can be 
presented as follows: 

(i) A trial value i? of E, is given; trial initial values $(Y~) and $‘(Y~) at an 
“origin rO” are given. 

(ii) The differential equation (1) is replaced by convenient difference 
equations, and the solution $(E; r) is computed. 
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(iii) This solution is accepted as the eigenfunction $“(v), if the boundary con- 
ditions (2) are numerically verified (the trial value ,!? is then the required eigenvalue 
EJ. 

(iv) If the boundary conditions are not satisfied, other trial values are use 
and the steps (i), (ii), (iii) are repeated until E converges (or $ converges). 

The numerical algorithm is tested by applying it to a model potential (like the 
Morse function). As mentioned above, the agreement between the computed eigen- 
value E; and the Morse exact one E,M is the usual test of this treatment. This test 
confirms the validity of the difference equations and their numerical solution. 

It is possible to test only the difference equations. This is possible if, for a model 
potential, the exact eigenvalue and the exact initial values of the solution, as well as 
the exact theoretical value of the solution at any point, are available. 

The Morse potential function is adequate for this purpose, for the following 
reasons: 

(i) The exact eigenvalue is known (Eq. (4)). 

(ii) The exact initial values $“(r,) and $:(r,) are known at rr (minimum of 
the potential) (see Appendix). 

(iii) The exact theoretical value of the solution $&Y) is known at any point 
@is. (8)> (9)). 

This test is of particular interest when high accuracy is required for the 
wavefunction, particularly for high levels. 

4. NUMERICAL APPLICATION 

Examples of the numerical application to the present work are given for the 
Morse potential function already used by Johnson [9], where the constants are 

w, = 1000, 

w,x, = 8, 

$ = 0.296594629. 

The reason for this choice is the large number of possible vibrational levels (V = 60). 
The difference equations to be tested are fifth order Runge-Kutta 1141. These 

equations contain the initial values $(ro), $‘(r,) and their use here may show the 
efficiency of the test presented in Section 3 better than the commonly used 
Numerov difference equation [ 151. 

In Table I we give the value $‘;(x) computed for the given potential and for 
v = 20 at several values of x = r - re. This computation is repeated for five mesh 
sizes h varying between 0.005 and 0.001 A. For each value of x the computed 
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TABLE I 

Values of the Vibration Wavefunction $“(x) 

h (A) 0.3 0.6 0.9 

0.005 -3.837 169 2 4.642 565 1 3.398 926 3 
0.004 -3.841 135 9 4.647 982 5 3.382 090 2 
0.003 -3.842 582 7 4.650 325 8 3.313 743 8 
0.002 -3.843 062 7 4.651 109 9 3.370 527 8 
0.001 -3.843 160 1 4.651 270 9 3.369 162 7 

Exact -3.843 164 8 4.651 280 3 3.369 717 1 

Note. Computed by Runge-Kutta difference equations (with several step-sizes it) and compared, at 
several points, to the exact value given by Eq. (8) (Johnson model potential [9], u = 20). 

wavefunctions I& are compared to the “exact” value $y calculated from the 
recurrent formula Eq. (8). All computations were done on the TI 980A computer. 

In Tables II and III results are given for u = 40 and u = 60, respectively. 
For all these examples, as well as for other levels and other potentials, the exact 

wavefunction $ ,” is the limit of the computed one when the mesh size h decreases. 
We conclude that this test “measures” the accuracy of the difference equations 

used for the numerical integration of the radial Schroedinger equation. 

TABLE II 

Values of the Vibration Wavefunction i”(x) 

h (A) 0.3 0.6 0.9 

0.005 0.919 573 0 -0.125 727 7 -0.716 300 1 
0.004 0.918 320 1 -0.117 785 1 -0.709 317 8 
0.003 0.917 493 1 -0.113 841 9 -0.705 629 9 
0.002 0.917 104 8 -0.112 327 5 -0.704 138 3 
0.001 0.916 997 9 -0.111 969 7 -0.703 769 7 

Exact 0.916 990 0 -0.111 945 9 -0.703 744 5 

Note. Computed by Runge-Kutta difference equations (with several step-sizes h) and compared, at 
several points, to the exact value given by Eq. (8) (Johnson model potential [9], u = 40). 
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TABLE III 

Values of the Vibration Wavefunction $,(x) 

h (A) 0.3 0.6 0.9 

0.005 -1.072 092 6 -1.163 160 0 0.686 600 1 
0.004 -1.074 339 6 -1.168 627 8 0.701 922 1 
0.003 -1.075 071 7 -1.170 698 4 0.709 036 4 
0.002 -1.075 220 9 -1.171 273 9 0.711 606 4 
0.001 -1.075 225 9 -1.171 363 1 0.712 178 7 

Exact -1.075 226 7 -1.17i 366 4 0.712 214 5 

Note. Computed by Runge-Kutta difference equations (with several step-sizes h) and compared, at 
several points, to the exact value given by Eq. (8) (Johnson model potential 191, Y = 60). 

APPENDIX: EXACT INITIAL VALUES FQR THE 

MORSE VIBRATIONAL WAVEFUNCTION 

At any point Y, the Morse vibrational wavefunction is given by 

~v(r)=e~‘/2Z(k~2v-11)/2L~-22u-l(Z), 

where z = ke-“(‘-‘e). 
Its logarithmic derivative is 

I &u(r) 

L 

z-(k-20-1) z 
&gT=a 

dLf:p2”-1(z) 

2 -~;-2”-1(4~ dz 
1 

’ 

Take the origin at r = re (z = k), and for the unnormalized wavefunction arbitrary 
Ic/&rJ = 1, we find 

We found previously [ 161 a recurrent formula relating &(Y,) to $:- ,(r,). This for- 
mula is obtained by considering 

Y” = 
k d 

cp~2”-l(k)x~L~-2’I-1(k)-v. 

By using the well-known relation [13] 

dL:(z) z -= nLE(z) - (n + a) L;- l(Z) 
dz 
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we get: 

Y”’ -(k-u-l)L~~:“-‘(k)/L~-2”-‘(k) 

and 

Y ” el= -(k-v) L~122”+l(k)/L~_:D+l(k). 

Relations (5) and (6) are used as many times as necessary, to find a relation 
between Y, and Y, _ 1 independent of the Laguerre polynomial. We finally get 

2Y,-,+k-2u 

“= -“(k-u)X(k-20) Y,p,-2v(k-v) 

with 

Y. = 0 

and 

bur,) = a- Y,l. 

The initial values of the Morse wavefunction are thus deduced for any level u 
without any approximation. 
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